
International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 23, Issue 01) and (Publishing Month: August 2015)

(An Indexed, Referred and Impact Factor Journal)

ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

18

Testing Abstract Data Types: A Formal Goal Oriented

Approach

Amal Awad Mirghani Yassin

Faculty of Computer Science and Information Technology,

Sudan University of Science and Technology, khartoum, Sudan

aamy_22@hotmail.com

Publishing Date: 5th August 2015

Abstract
Whereas software testing is known to be able to prove the

presence of faults, but not their absence, it can also be used

to build a statistical argument regarding the likelihood of

failure free operation. In this paper, we elaborate on this

argument to present a testing method that is part of an

integrated software validation process, whereby testing and

proving methods play complementary roles in advancing

product quality.

Keywords: Software testing, program proving,

program specification, test oracle, software tools.

1. Introduction

Software testing is the activity where a software

product is executed on sample data and its behavior

is judged with respect to the specification that the

program is intended to satisfy. A complementary

technique to ensure or verify the correctness of

software products is program verification, a static

method that attempts to prove by logical reasoning

that the program is correct, assuming a given

semantic definition of the source language. These

two approaches to program quality assurance are

often seen as alternatives, and offer contrasting

attributes:

 Whereas program testing is a dynamic technique

that uses the executable code of the program,

program verification is a static technique, which

operates on the source code.

 Whereas program testing is based on the

assumption that the testing environment is a

faithful imitation of the user’s operating

environment, program verification is based on

the assumption that the compiler and the run

time environment of the program are compatible

with the semantic definition of the programming

language.

 Whereas program testing can be used to find

faults (if a test fails) but cannot be used to prove

the absence of faults (it is virtually impossible in

general to test the program on all possible test

data), program verification can be used to prove

the absence of faults (under the assumptions

cited above) but cannot necessarily be used to

prove their presence (if a proof fails, we have no

easy way to tell whether it is because the

program is incorrect or because the proof was

not well planned).

 Whereas testing can be applied to programs of

any size and complexity, program proving can

only be applied to very small programs, which

use only simple constructs.

 Whereas program proving concludes with a

logical claim about the correctness of the

program, program testing concludes either with

a report of a failure or some statistical claim

about the reliability of the program.

In practice, program verification has been the subject

of much research, but has made little inroads into

industrial practice; by contrast, software testing has

been common practice in industry, but in

circumstances where it is difficult to make any

credible claims of software quality. In this paper, we

argue in favor of a hybrid approach, whereby testing

and proving are used in concert, each being deployed

where it works best. Specifically, we envision

employing our hybrid proving/ testing approach in

the context of verifying source code implementing

abstract data types (or other systems that maintain an

internal state) specified axiomatically, by means of

axioms and rules. Whereas verification techniques

are used to verify the source code against the

axioms, testing is used to check the source code

against oracles defined by the rules; also, the testing

phase follows the discipline of cleanroom software

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 23, Issue 01) and (Publishing Month: August 2015)

(An Indexed, Referred and Impact Factor Journal)

ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

19

engineering [1], and concludes with an empirical

estimate of the reliability of the software product,

measured as a mean time to failure.

2. Testing Abstract Data Types against

rules

We represent the specification of abstract data types

by means of three attributes:

 An input space, say X that represents the

symbols that may be fed into the ADT as inputs.

For a stack ADT, for example, these would be:

X = {init, pop, top, size, empty} {push}

itemtype.

From this set, we build set H of sequences of

elements of X, and we refer to H as the set of

input histories, or input sequences.

 An output space, which represents the set of

symbols that the ADT returns on output. For the

stack ADT, this would be:

Y = itemtype integer Boolean {error}.

 A relation (often a function) from H to Y, which

associates an output for each input sequence.

For the stack ADT, this relation would include

pairs such as:

Stack (init.push(a).push(b).top.push(c).pop. top)

= b.

This specification model resembles trace

specification, described in [2], though they were

developed independently. In order to represent

specifications such as these in closed form, we use

an axiomatic notation that includes:

 Axioms, which represent the behavior of the

ADT for elementary input sequences. As an

example, consider the following axiom for the

stack specification:

1. Top axioms.

a. stack(init.top) = error.

b. stack(init.h.push(a).top) = a.

2. Size axiom.

a. stack(init.size) = 0.

3. Empty axioms.

a. stack(init.empty)=true.

b. stack(init.push(a).empty)=false.

 Rules, which define the behavior of the ADT for

complex input sequences as a function of their

behavior for simpler input sequences. As an

example, consider the following rule for the stack

specification:

1. Init rule:

stack(h.init.h’)=stack(init.h’).

Init reinitializes the stack state, even if there

a history h prior to init or not.

2. Init Pop rule:

stack(init.pop.h) = stack(init.h).

stack(init.h.push(a).pop.h+)=

stack(init.h.h+).

A pop operation cancels the push before it.

3. Size rule:

stack(init.h.push(a).size)=1+stack(init.h.size)

Push operation raises the size of the stack by

1 because the stack size is not restricted.
4. Empty rules

a. stack(init.h.push(a).h’.empty)═>

stack(init.h.h’.empty).

If, despite having operation push(a) in its

history, the stack is empty, then a fortiori it

would empty without push(a).

b. stack(init.h.empty)═>

stack(init.h.pop.empty).

If the stack is empty, then a fortiori it would

be empty if an extra pop operation was

performed in its past history.

5. V-operation rules

a. stack(init.h.top.h+)=stack(init.h.h+).

b. stack(init.h.size.h+)=stack(init.h.h+).

c. stack(init.h.empty.h+)= stack(init.h.h+).

V-operations have no impact on the future behavior

of the stack.

Where h is an arbitrary input history and h+ is an

arbitrary non null input history.

We suppose that we have a stack implementation in

the form of a class in an object oriented language,

such as C++ or Java, and we suppose that the class

implementation has a method for each input symbol

of the specification. In order to check that our

implementation satisfies the rule indicated above, we

proceed as follows [3]:

 In order to raise our level of confidence in the

correctness of the implementation, we resolve to

test the implementation a large number of times,

using a random data generator for the test data.

 The main goal of the test data generator is to

generate input histories h and h+ at random.

 The way to check that the stack is in the same

state after executing init.h.push(a).pop.h+ and

after executing init.h.h+ is to check that the two

input histories lead to the same internal state;

since we do not want to have to review what is

the internal state, we equate that condition with

the condition that all the function that report on

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 23, Issue 01) and (Publishing Month: August 2015)

(An Indexed, Referred and Impact Factor Journal)

ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

20

the state (namely top, size, and empty) return the

same value, in other words:

init.h.push(a).pop.h+.top = init.h.h+.top

init.h.push(a).pop.h+.size = init.h.h+.size

init.h.push(a).pop.h+.empty = init.h.h+.empty

To check this, we first check the test driver which

looks as follow:

{

int nbf=0;

for (int i=0; i<testsize; i++)

 {

switch (i%9)

case 1: initpoprule();

case 3: sizerule();

case 6: vopruletop();

case 8: vopruleempty();

case 0: initrule();

case 2: pushpoprule();

case 4: emptyrulea();

case 5: emptyruleb();

case 7: voprulesize();

 }

cout<<"failure rate:" <<nbf<<"out of

"<<testsize<<endl; }

3. Goal Oriented Testing

Once we are confident that our test driver is working

properly, i.e. generates the right random data and

tests the right condition for correctness, we can use it

to estimate the mean time to failure of the software

product by following the cleanroom process for

reliability estimation [4]. This process advocates to

executing the test driver until a test fails; when that

happens, we stop the experiment, diagnose the fault,

remove it, and then we continue with the test until

the next failure. At the conclusion of this process,

we are able to deliver the software product with a

guaranteed MTTF estimate, based on empirical

observations of how the product behaved under test.

As an illustration, consider the following table of test

runs

Table1. Test runs

Number of faults

removed

Number of executions

without failure

0 12

1 40

2 38

3 90

4 500

5 220

6 2300

Our estimate of the MTTF at the completion of this

test is:

N
RMTTFNMTTF 0

Where

MTTF: Mean Time to Failure, is the mean of the

random variable that measures the number of

executions before the next system failure,

0MTTF : is the mean time to failure of the software

product at the beginning of the testing phase,

NMTTF : is the mean time to failure after N faults

have been removed,

R: is the reliability growth factor, which reflects by

what multiplicative factor the MTTF grows, on

average, after each fault is removed.

By applying linear regression to the logarithmic to

the equation below

 RLogNMTTFLogNMTTFLog 0

Where

 NMTTFLog : Dependent variable

N: independent variable.

The calculations in the table blew include the

logarithm of the Number of executions without

failure in the third column, Is the average of

Number of faults removed and is average of

logarithm of the Number of executions without

failure.

Table2. The Calculations of MTTF

Number

of faults

removed

(N)

Number

of

execution

s without

failure

log

(y)

0 12 1.08 -3 9 3.03

1 40 1.6 -2 4 0.98

2 38 1.58 -1 1 0.51

3 90 1.95 0 0 0.00

4 500 2.7 1 1 0.61

5 220 2.34 2 4 0.50

6 2300 3.36 3 9 3.81

 = 3

 =

2.09

 ∑= 28 ∑ =

9.44

(2)

(1)

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 23, Issue 01) and (Publishing Month: August 2015)

(An Indexed, Referred and Impact Factor Journal)

ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

21

4. Related Work

An approach for testing Java implementations of

abstract data types against property-driven algebraic

specifications presented in [5], by determining at run-

time if the analyzed class behaves as required by the

specification. This done by reducing the compatibility

checking problem to the run-time monitoring of

contract annotated classes, which is supported by

several runtime assertions-checking tools. The

automatic generation of monitorable contracts and a

refinement language supported by using a simple

language to convert specifications into Java types and

technique to generate monitorable classes, allowing

for a simple and effective runtime monitoring and

supports developers to use formal specifications.

However, this approach is dependent on using the

clone method quality (method is used to create a copy

of an object of a class) which is supplied by the user.

[6] Presents a testing approach for modules using an

algebraic specification as a set of executable rewrite

rules. The user provides the specification, an

implementation class, and an explicit mapping from

concrete data structures of the implementation

instance variables to abstract values of the

specification. The union of the automatically

generated direct implementation; and the

implementation given by the implementer, with

additional code to check their agreement; together are

used to build a self-checking implementation. The

direct implementation is generated from the

specification by representing instances of abstract

data types as terms, and manipulating them according

to the rewrite rules defined in the ADT specification.

However, the user must write the representation

mapping, or abstraction mapping in the same

language as the implementation class, and asks user

knowledge about internal representation details. And

there are some axioms that are not accepted by this

approach; for example, equations like

insert(X,insert(Y,Z))=insert(Y,insert(X,Z)) cannot be

accepted as rewrite rules because they can be applied

infinitely often.

AutomatedQA Testcomplete9 from SmartBear [7], is

a functional and unit testing tool that used to handle a

wide range of application and technologies such as

Visual Basic, Delphi, C++Builder, .NET, WPF,

Visual C++, Java and Web applications. Further, it

can start the test with different dataset for specific

item to be tested that can be generated by using

TestComplete table variables which can be created

with any number of columns or stored data excel file

format. After recording the user steps, the test is

executed against these steps, Testcomplete9 analyses

the test that displayed in Test Log and posts messages

about results of each test operation, with successful or

failed according to Test Log with image associated to

each result.

Test Studio by Telerik [8], is a functional, load,

performance and mobile applications testing tool for

ASP.NET AJAX, PHP, Silverlight, and MVC

technologies. Test data can be created locally and

associated with a given test, or add external data

source in format of Excel spread sheet, XML file,

Database source and CSV file , further more Test

Studio can run test inside visual studio application.

The first step in test is recording the user steps (in

web test or WPF test) and then run the test according

to these steps. After that, Test Studio view test results

with pass or fail and also can report the result in

graph form.

HP Unified Functional Testing (UFT) [9], is a

functional and regression testing tool for GUI and

API testing. The UFT record the user action on

specific application or web site and can use data table

for adding data for test. After running the test, UFT

provides test steps view and executive summary

report associated with each step, further it gives the

statistics about the previous run and current run in the

form of pie charts with pass or fail notification.

Ranorex is a graphical user interface (GUI) testing

tools for web, desktop, and mobile technologies [10].

It supports Win32, WPF, and Desktop applications,

in addition to Flex, HTML, Flash, AJAX, and

Silverlight web applications. The first step in

Ranorex test is creating new test suite, and then start

record user steps in specific application or browser or

start mobile recording. The recorder constructs step

for each action or step performed in the application or

browser. After running the test, Ranorex simulate the

user actions or steps which were recorded. The last

step in the test is executing it with report that shows

the test is successful or not with mechanism to face

the errors which make the test fail. Ranorex provides

test with internal or external data source as Excel

files, CSV files and SQL databases.

5. Automation Plans

We envision developing an automated tool that

supports the test of class implementations with

respect to abstract data type specifications using the

International Journal of Engineering Sciences Paradigms and Researches (IJESPR)

(Vol. 23, Issue 01) and (Publishing Month: August 2015)

(An Indexed, Referred and Impact Factor Journal)

ISSN (Online): 2319-6564

www.ijesonline.com

IJESPR

www.ijesonline.com

22

pattern discussed in this paper. This tool proceeds in

four steps:

 Oracle specification. We use rules to generate

oracles, so that the test checks that the class

implementation satisfies the proposed rule.

 Test Data Generation. Test data is generated

randomly, by instantiating the various

occurrences of arbitrary input histories

(represented by h, h’, h’’, h+, etc) in the rules.

 Test Driver Design. The test driver that we

adopt is an adaptation of the basic design shown

in section II; we merely change the number of

rules and how they are called.

 Test Execution. The test driver queries the user

about the number of random tests she/he wants

to run, as well as the type of error report she/he

wants to get, and it produces a test report

accordingly.

The main source of difficulty in this project is the

wide diversity in the structure of rules, their wide

variety of parameters, and their different forms. This

matter is currently under investigation.

6. Conclusions

Our main focus in this paper is employing our testing

approach in the context of verifying source code

implementing abstract data types specified

axiomatically, by means of axioms and rules,

concludes with measuring of a mean time to failure

as an empirical estimate of the reliability of the

software product.

Acknowledgements

I would like to express my deep gratitude to my

supervisor Prof. Ali Mili For his persistent constant

guidance and wise counsel.

References

[1] S. A. Becker and J. A. Whittaker, Cleanroom

software engineering practices. Igi Global, 1997.

[2] D. Hoffman and R. Snodgrass, “Trace

specifications: Methodology and models,”

Software Engineering, IEEE Transactions on,

vol. 14, no. 9, pp. 1243–1252, 1988.

[3] F. Tchier and A. Mili, “On the verification and

validation of software modules: Applications in

teaching and practice,” Tech. Rep. of NJIT,

2013.

[4] S. J. Prowell, C. J. Trammell, R. C. Linger, and

J. H. Poore, Cleanroom software engineering:

technology and process. Addison-Wesley

Professional, 1999.

[5] I. Nunes, A. Lopes, V. Vasconcelos, J. Abreu,

and L. Reis, “Testing implementations of

algebraic specifications with design-by-contract

tools,” Department of Informatics, University of

Lisbon, 2005.

[6] S. Antoy and D. Hamlet, “Automatically

Checking an Implementation against Its Formal

Specification Self-checking ADTs,” Software

Engineering, IEEE Transactions on, vol. 26, no.

1, pp. 55–69, 2000

[7] Getting Started With TestComplete9, SmartBear

Software, 2013.

[8] Test Studio Standalone & Visual Studio Plug-In,

Quick-Start Guide, Telerik Corp, 2012.

[9] HP Unified Functional Testing, Tutorial, HP,

2012.

[10] Ranorex Tutorial, Test Automation Guide,

Ranorex, 2013.

