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Abstract 
Whereas software testing is known to be able to prove the 

presence of faults, but not their absence, it can also be used 

to build a statistical argument regarding the likelihood of 

failure free operation.  In this paper, we elaborate on this 

argument to present a testing method that is part of an 

integrated software validation process, whereby testing and 

proving methods play complementary roles in advancing 

product quality. 

Keywords: Software testing, program proving, 

program specification, test oracle, software tools. 

1. Introduction 

Software testing is the activity where a software 

product is executed on sample data and its behavior 

is judged with respect to the specification that the 

program is intended to satisfy.  A complementary 

technique to ensure or verify the correctness of 

software products is program verification, a static 

method that attempts to prove by logical reasoning 

that the program is correct, assuming a given 

semantic definition of the source language.  These 

two approaches to program quality assurance are 

often seen as alternatives, and offer contrasting 

attributes: 

 Whereas program testing is a dynamic technique 

that uses the executable code of the program, 

program verification is a static technique, which 

operates on the source code. 

 Whereas program testing is based on the 

assumption that the testing environment is a 

faithful imitation of the user’s operating 

environment, program verification is based on 

the assumption that the compiler and the run 

time environment of the program are compatible 

with the semantic definition of the programming 

language. 

 Whereas program testing can be used to find 

faults (if a test fails) but cannot be used to prove 

the absence of faults (it is virtually impossible in 

general to test the program on all possible test 

data), program verification can be used to prove 

the absence of faults (under the assumptions 

cited above) but cannot necessarily be used to 

prove their presence (if a proof fails, we have no 

easy way to tell whether it is because the 

program is incorrect or because the proof was 

not well planned). 

 Whereas testing can be applied to programs of 

any size and complexity, program proving can 

only be applied to very small programs, which 

use only simple constructs. 

 Whereas program proving concludes with a 

logical claim about the correctness of the 

program, program testing concludes either with 

a report of a failure or some statistical claim 

about the reliability of the program. 

In practice, program verification has been the subject 

of much research, but has made little inroads into 

industrial practice; by contrast, software testing has 

been common practice in industry, but in 

circumstances where it is difficult to make any 

credible claims of software quality.  In this paper, we 

argue in favor of a hybrid approach, whereby testing 

and proving are used in concert, each being deployed 

where it works best.  Specifically, we envision 

employing our hybrid proving/ testing approach in 

the context of verifying source code implementing 

abstract data types (or other systems that maintain an 

internal state) specified axiomatically, by means of 

axioms and rules.  Whereas verification techniques 

are used to verify the source code against the 

axioms, testing is used to check the source code 

against oracles defined by the rules; also, the testing 

phase follows the discipline of cleanroom software 
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engineering [1], and concludes with an empirical 

estimate of the reliability of the software product, 

measured as a mean time to failure. 

2. Testing Abstract Data Types against 

rules  

We represent the specification of abstract data types 

by means of three attributes: 

 An input space, say X that represents the 

symbols that may be fed into the ADT as inputs.  

For a stack ADT, for example, these would be: 

X = {init, pop, top, size, empty}  {push}  

itemtype. 

From this set, we build set H of sequences of 

elements of X, and we refer to H as the set of 

input histories, or input sequences. 

 An output space, which represents the set of 

symbols that the ADT returns on output.  For the 

stack ADT, this would be: 

Y = itemtype  integer  Boolean  {error}. 

 A relation (often a function) from H to Y, which 

associates an output for each input sequence.  

For the stack ADT, this relation would include 

pairs such as: 

Stack (init.push(a).push(b).top.push(c).pop. top) 

= b. 

This specification model resembles trace 

specification, described in [2], though they were 

developed independently. In order to represent 

specifications such as these in closed form, we use 

an axiomatic notation that includes: 

 Axioms, which represent the behavior of the 

ADT for elementary input sequences.  As an 

example, consider the following axiom for the 

stack specification: 

1. Top axioms. 

a. stack(init.top) = error. 

b. stack(init.h.push(a).top) = a. 

2. Size axiom. 

a. stack(init.size) = 0. 

3. Empty axioms. 

a. stack(init.empty)=true. 

b. stack(init.push(a).empty)=false. 

 Rules, which define the behavior of the ADT for 

complex input sequences as a function of their 

behavior for simpler input sequences.  As an 

example, consider the following rule for the stack 

specification: 

1. Init rule: 

stack(h.init.h’)=stack(init.h’). 

Init reinitializes the stack state, even if there 

a history h prior to init or not. 

2. Init Pop rule: 

stack(init.pop.h) = stack(init.h). 

stack(init.h.push(a).pop.h+)= 

stack(init.h.h+). 

A pop operation cancels the push before it.  

3. Size rule: 

stack(init.h.push(a).size)=1+stack(init.h.size) 

Push operation raises the size of the stack by 

1 because the stack size is not restricted. 
4. Empty rules 

a. stack(init.h.push(a).h’.empty)═> 

stack(init.h.h’.empty). 

If, despite having operation push(a) in its 

history, the stack is empty, then a fortiori it 

would empty without push(a). 

b. stack(init.h.empty)═> 

stack(init.h.pop.empty). 

If the stack is empty, then a fortiori it would 

be empty if an extra pop operation was 

performed in its past history. 

5. V-operation rules 

a. stack(init.h.top.h+)=stack(init.h.h+). 

b. stack(init.h.size.h+)=stack(init.h.h+). 

c. stack(init.h.empty.h+)= stack(init.h.h+). 

V-operations have no impact on the future behavior 

of the stack. 

Where h is an arbitrary input history and h+ is an 

arbitrary non null input history. 

We suppose that we have a stack implementation in 

the form of a class in an object oriented language, 

such as C++ or Java, and we suppose that the class 

implementation has a method for each input symbol 

of the specification.  In order to check that our 

implementation satisfies the rule indicated above, we 

proceed as follows [3]: 

 In order to raise our level of confidence in the 

correctness of the implementation, we resolve to 

test the implementation a large number of times, 

using a random data generator for the test data. 

 The main goal of the test data generator is to 

generate input histories h and h+ at random. 

 The way to check that the stack is in the same 

state after executing init.h.push(a).pop.h+ and 

after executing init.h.h+ is to check that the two 

input histories lead to the same internal state; 

since we do not want to have to review what is 

the internal state, we equate that condition with 

the condition that all the function that report on 



International Journal of Engineering Sciences Paradigms and Researches (IJESPR) 

(Vol. 23, Issue 01) and (Publishing Month: August 2015) 

(An Indexed, Referred and Impact Factor Journal) 

ISSN (Online): 2319-6564 

www.ijesonline.com 
 

IJESPR 

www.ijesonline.com 

20 

 

the state (namely top, size, and empty) return the 

same value, in other words: 

init.h.push(a).pop.h+.top = init.h.h+.top 

init.h.push(a).pop.h+.size = init.h.h+.size 

init.h.push(a).pop.h+.empty = init.h.h+.empty 

To check this, we first check the test driver which 

looks as follow: 

{ 

int nbf=0;  

for (int i=0; i<testsize; i++) 

    { 

switch (i%9) 

case 1: initpoprule(); 

case 3: sizerule(); 

case 6: vopruletop();  

case 8: vopruleempty(); 

case 0: initrule();  

case 2: pushpoprule(); 

case 4: emptyrulea();  

case 5: emptyruleb(); 

case 7: voprulesize(); 

    } 

cout<<"failure rate:" <<nbf<<"out of 

"<<testsize<<endl; } 

3. Goal Oriented Testing 

Once we are confident that our test driver is working 

properly, i.e. generates the right random data and 

tests the right condition for correctness, we can use it 

to estimate the mean time to failure of the software 

product by following the cleanroom process for 

reliability estimation [4].  This process advocates to 

executing the test driver until a test fails; when that 

happens, we stop the experiment, diagnose the fault, 

remove it, and then we continue with the test until 

the next failure.  At the conclusion of this process, 

we are able to deliver the software product with a 

guaranteed MTTF estimate, based on empirical 

observations of how the product behaved under test. 

As an illustration, consider the following table of test 

runs 

 
Table1. Test runs 

Number of faults 

removed 

Number of executions 

without failure 

0 12 

1 40 

2 38 

3 90 

4 500 

5 220 

6 2300 

 

Our estimate of the MTTF at the completion of this 

test is:  

N
RMTTFNMTTF  0                         

 

Where 

MTTF:  Mean Time to Failure, is the mean of the 

random variable that measures the number of 

executions before the next system failure, 

0MTTF : is the mean time to failure of the software 

product at the beginning of the testing phase, 

NMTTF : is the mean time to failure after N faults 

have been removed, 

R: is the reliability growth factor, which reflects by 

what multiplicative factor the MTTF grows, on 

average, after each fault is removed. 

By applying   linear regression to the logarithmic to 

the equation below 

     RLogNMTTFLogNMTTFLog  0                  
 

Where  

 NMTTFLog : Dependent variable  

N: independent variable. 

The calculations in the table blew include the 

logarithm of the Number of executions without 

failure in the third column,  Is the average of 

Number of faults removed and  is average of 

logarithm of the Number of executions without 

failure. 

Table2. The Calculations of MTTF   

Number 

of faults 

removed 

 

(N) 

Number 

of 

execution

s without 

failure 

log 

 

 

 

(y) 

 

  

0 12 1.08 -3 9 3.03 

1 40 1.6 -2 4 0.98 

2 38 1.58 -1 1 0.51 

3 90 1.95 0 0 0.00 

4 500 2.7 1 1 0.61 

5 220 2.34 2 4 0.50 

6 2300 3.36 3 9 3.81 

 = 3 

 = 

2.09 

 ∑= 28 ∑ = 

9.44 

 

(2) 

(1) 
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4. Related Work 

An approach for testing Java implementations of 

abstract data types against property-driven algebraic 

specifications presented in [5], by determining at run-

time if the analyzed class behaves as required by the 

specification. This done by reducing the compatibility 

checking problem to the run-time monitoring of 

contract annotated classes, which is supported by 

several runtime assertions-checking tools. The 

automatic generation of monitorable contracts and a 

refinement language supported by using a simple 

language to convert specifications into Java types and 

technique to generate monitorable classes, allowing 

for a simple and effective runtime monitoring and 

supports developers to use formal specifications. 

However, this approach is dependent on using the 

clone method quality (method is used to create a copy 

of an object of a class) which is supplied by the user.  

[6] Presents a testing approach for modules using an 

algebraic specification as a set of executable rewrite 

rules. The user provides the specification, an 

implementation class, and an explicit mapping from 

concrete data structures of the implementation 

instance variables to abstract values of the 

specification. The union of the automatically 

generated direct implementation; and the 

implementation given by the implementer, with 

additional code to check their agreement; together are 

used to build a self-checking implementation. The 

direct implementation is generated from the 

specification by representing instances of abstract 

data types as terms, and manipulating them according 

to the rewrite rules defined in the ADT specification.  

However, the user must write the representation 

mapping, or abstraction mapping in the same 

language as the implementation class, and asks user 

knowledge about internal representation details. And 

there are some axioms that are not accepted by this 

approach; for example, equations like 

insert(X,insert(Y,Z))=insert(Y,insert(X,Z)) cannot be 

accepted as rewrite rules because they can be applied 

infinitely often. 

AutomatedQA Testcomplete9 from SmartBear [7], is 

a functional and unit testing tool that used to handle a 

wide range of application and technologies such as 

Visual Basic, Delphi, C++Builder, .NET, WPF, 

Visual C++,  Java and Web applications. Further, it 

can start the test with different dataset for specific 

item to be tested that can be generated by using 

TestComplete table variables which can be created 

with any number of columns or stored data excel file 

format. After recording the user steps, the test is 

executed against these steps, Testcomplete9 analyses 

the test that displayed in Test Log and posts messages 

about results of each test operation, with successful or 

failed according to Test Log with image associated to 

each result. 

Test Studio by Telerik [8], is a functional, load, 

performance and mobile applications testing tool for 

ASP.NET AJAX, PHP, Silverlight, and MVC 

technologies. Test data can be created locally and 

associated with a given test, or add external data 

source in format of Excel spread sheet, XML file, 

Database source and CSV file , further more Test 

Studio can run test inside visual studio application.  

The first step in test is recording the user steps (in 

web test or WPF test) and then run the test according 

to these steps. After that, Test Studio view test results 

with pass or fail and also can report the result in 

graph form. 

HP Unified Functional Testing (UFT) [9], is a 

functional and regression testing tool for GUI and 

API testing. The UFT record the user action on 

specific application or web site and can use data table 

for adding data for test. After running the test, UFT 

provides test steps view and executive summary 

report associated with each step, further it gives the 

statistics about the previous run and current run in the 

form of pie charts with pass or fail notification. 

Ranorex is a graphical user interface (GUI) testing 

tools for web, desktop, and mobile technologies [10]. 

It supports Win32, WPF, and Desktop applications, 

in addition to Flex, HTML, Flash, AJAX, and 

Silverlight web applications. The first step in 

Ranorex test is creating new test suite, and then start 

record user steps in specific application or browser or 

start mobile recording. The recorder constructs step 

for each action or step performed in the application or 

browser. After running the test, Ranorex simulate the 

user actions or steps which were recorded. The last 

step in the test is executing it with report that shows 

the test is successful or not with mechanism to face 

the errors which make the test fail. Ranorex provides 

test with internal or external data source as Excel 

files, CSV files and SQL databases. 

 

5. Automation Plans 

 

We envision developing an automated tool that 

supports the test of class implementations with 

respect to abstract data type specifications using the 
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pattern discussed in this paper.  This tool proceeds in 

four steps: 

 Oracle specification.  We use rules to generate 

oracles, so that the test checks that the class 

implementation satisfies the proposed rule. 

 Test Data Generation.  Test data is generated 

randomly, by instantiating the various 

occurrences of arbitrary input histories 

(represented by h, h’, h’’, h+, etc) in the rules. 

 Test Driver Design.  The test driver that we 

adopt is an adaptation of the basic design shown 

in section II; we merely change the number of 

rules and how they are called. 

 Test Execution.  The test driver queries the user 

about the number of random tests she/he wants 

to run, as well as the type of error report she/he 

wants to get, and it produces a test report 

accordingly. 

The main source of difficulty in this project is the 

wide diversity in the structure of rules, their wide 

variety of parameters, and their different forms.  This 

matter is currently under investigation. 

6. Conclusions 

Our main focus in this paper is employing our testing 

approach in the context of verifying source code 

implementing abstract data types specified 

axiomatically, by means of axioms and rules, 

concludes with measuring of a mean time to failure 

as an empirical estimate of the reliability of the 

software product. 
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